Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.
نویسندگان
چکیده
Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue engineering.
منابع مشابه
Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates.
Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Coval...
متن کاملAttachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes.
Micropatterning strategies often call for attachment of non-fouling biomaterials and immobilization of proteins in order to create biosensing surfaces or to control cell-surface interactions. Our laboratory has made frequent use of hydrogel photolithography - a micropatterning process for immobilizing poly(ethylene glycol) (PEG) hydrogel microstructures on glass surfaces. In the present study w...
متن کاملChemistry of conjugation to gold nanoparticles affects G-protein activity differently
BACKGROUND Gold nanoparticles (AuNP) are extensively used as biophysical tools in the area of medicine and technology due to their distinct properties. However, vivid understanding of the consequences of biomolecule-nanomaterial interactions is still lacking. In this context, we explore the affect of conjugation of Gαi1 subunit (of heterotrimeric G-proteins) to AuNP and examine its consequences...
متن کاملImmobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration
Bacterial cellulose (BC) is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilizat...
متن کاملCovalent modification of human immunodeficiency virus type 1 p6 by SUMO-1.
The p6 domain of the human immunodeficiency virus type 1 (HIV-1) Gag polyprotein mediates virion budding from infected cells via protein-protein contacts with the class E vacuolar protein sorting factors, Tsg101 and AIP1/ALIX. Interaction with Tsg101 is strengthened by covalent attachment of monovalent ubiquitin to HIV-1 p6. To identify additional host factors that bind to HIV-1 p6, a human cDN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials science
دوره 2 9 شماره
صفحات -
تاریخ انتشار 2014